
Davide Altomare and David Loris

2022-02-07

This paper introduces ChannelAttribution, an open-source library for the estimation
of Markov models from customer journey data. ChannelAttribution consists on a R
package and a Python library that let to estimate Markov models easily and quickly.

channelattribution.io

1 Introduction

Library ChannelAttribution approaches attribution problem in a probabilistic way. It uses a k-order Markov
representation to identifying structural correlations in the customer journey data. This would allow advertisers
to give a more reliable assessment of the marketing contribution of each channel. The approach is the one
presented in F. Anderl, I. Becker, F. v. Wangenheim, J.H. Schumann (2014): Mapping the customer journey:
a graph-based framework for attribution modeling. Di�erently from them, ChannelAttribution uses stochastic
simulations for the estimation process. In this way it is also possible to take into account conversion values and
their variability in the computation of the channel importance. Moreover the package contains a function that
estimates three heuristic models (�rst-touch, last-touch and linear-touch approach) for the same problem. The
following paragraph is a gentle introduction to Markov model. It also contains some considerations on heuristic
models.

2 First-order Markov Model

First-order Markov model is a probabilistic model used to model changing system. It assumes that future
states depend only on current state. There is a large leterature about Markov models and di�erent �elds where
this kind of models have been applied. In the following we will show how they can be applied to attribution
problem in online marketing. Consider the following example in which we have 4 states: (START), A, B,
(CONVERSION) and 3 paths recorded:

PATH CONVERSIONS

(START) -> A -> B -> A -> B -> B -> A -> (CONV) 1
(START) ->A -> B -> B -> A -> A -> (CONV) 1
(START) -> A -> A -> (CONV) 1

TOTAL 3

For every couple of ordered states we count the number of directed edges:

EDGE ARROW.COUNT

(START) -> A 3
(START) -> B 0
A -> A 2
A -> B 3
A -> (CONV) 3
B -> A 3
B -> B 2
B -> (CONV) 0

TOTAL 16

From the table we can calculate the transition probabilities between states:
Now we have all the information to plot the Markov Graph:

1

https://www.linkedin.com/in/davide-altomare-29079a3a/
https://www.linkedin.com/in/david-thomas-loris-2b7950/
https://channelattribution.io
https://channelattribution.io
https://channelattribution.io
https://channelattribution.io
https://channelattribution.io

EDGE ARROW.COUNT TRANSITION.PROBABILITIES

(START) -> A 3 3/3
(START) -> B 0 0/3

TOT (START) 3

A -> A 2 2/8
A -> B 3 3/8
A -> (CONV) 3 3/8

TOT A 8

B -> A 3 3/5
B -> B 2 2/5
B -> (CONV) 0 0/5

TOT B 5

START A B

CONV

100%

25%
37.5%

37.5%

40%

60%

This kind of Markov Graph is called First-Order Markov Graph because the probability of reaching one
state depends only on the previous state visited. From the Graph, or more clearly from the original data, we
see that every path leads to conversion. Thus the conversion rate of the Graph is 1. Now we want to de�ne a
measure of channel importance using the relationship between states described by the Graph. Importance of
channel A can be de�ned as the change in conversion rate if channel A is dropped from the Graph, or in other
terms if channel A becomes a NULL state. A NULL state is an absorbing state so if one reaches this STATE
can't move on.

START NULL B

CONV

100%

25%

37.5%

37.5%

40%

60%

This Graph simpli�es to:

START NULL
100%

In previous Graph it's easy to see that if channel A becomes a NULL state there is no way of reaching
conversion from START state. So conversion rate of this Graph is 0. The conversion drops from 1 (conversion
of the original Graph) to 0. Thus importance of channel A (de�ned as the change in conversion rate) is 1. In
similar way we de�ne the importance of channel B as the change in conversion rate if channel B is dropped
from the Graph, or in other terms if channel B becomes a NULL state.

2

START A NULL

CONV

100%

25%
37.5%

37.5%

40%

60%

This Graph simpli�es to:

START A NULL

CONV

100% 50%

50%

In previous Graph we see the probability of reaching conversion from START state is 0.5. Conversion drops
from 1 (conversion rate of the original Graph) to 0.5. Thus the importance of channel B (de�ned as the change in
conversion rate) is 0.5. Once we have the importance weights of every channel we can do a weighted imputation
of total conversions (3 in this case) between channels.

CHANNEL CONVERSIONS

A 2 [=3 x 1/(1+0.5)]
B 1 [= 3 x 0.5/(1+0.5)]

TOTAL 3

Now let's go back to the original data:

PATH CONVERSIONS

(START) -> A -> B -> A -> B -> B -> A -> (CONV) 1
(START) ->A -> B -> B -> A -> A -> (CONV) 1
(START) -> A -> A -> (CONV) 1

TOTAL 3

We see that if we use a �rst-touch or last-touch approach, all the conversions are assigned to channel A,
despite the important work of channel B in �conversion game� is clear from the data. The channel attribution
problem can be viewed as a football match, to better understand how di�erent approaches work. So channels
can be viewed as players, paths are game actions and conversions are goals. Markov Model analyses relationships
between game actions to understand the role of the player in scoring. While heuristic approach analyzes one
action (path) at the time. So last-touch approach rewards only players who scored, while �rst-touch approach
rewards only players who started the action. Linear approach rewards with the same credit to every player
who took part the action, while time-decay approaches gives subjective weights to every player who took part
the action. As we have seen Markov Model require as inputs paths and total conversions and does not require
subjective assumptions, di�erently from heuristic approaches.

3 R package ChannelAttribution

In the following example we will show how R package ChannelAttribution can be used for multichannel attri-
bution problem.

3

https://channelattribution.io
https://channelattribution.io

#LOAD LIBRARIES AND DATA

library(ChannelAttribution)

library(reshape2)

library(ggplot2)

data(PathData)

#ESTIMATE HEURISTIC MODELS

H=heuristic_models(Data,"path","total_conversions",var_value="total_conversion_value")

#ESTIMATE MARKOV MODEL

M=markov_model(Data, "path", "total_conversions", var_value="total_conversion_value")

#PLOT TOTAL CONVERSIONS

R=merge(H,M,by="channel_name")

R1=R[,(colnames(R)%in%c("channel_name","first_touch_conversions","last_touch_conversions",

"linear_touch_conversions","total_conversion"))]

colnames(R1)=c("channel_name","first_touch","last_touch","linear_touch","markov_model")

R1=melt(R1,id="channel_name")

ggplot(R1, aes(channel_name, value, fill = variable)) +

ggtitle("")+

geom_bar(stat="identity", position = "dodge") +

theme(plot.title = element_text(hjust = 0.5))+

theme(text = element_text(size=14)) +

theme(plot.title=element_text(size=18)) +

theme(legend.title = element_blank()) +

ylab("") +

xlab("")

#PLOT REVENUES

R2=R[,(colnames(R)%in%c("channel_name","first_touch_value","last_touch_value","linear_touch_value",

"total_conversion_value"))]

colnames(R2)=c("channel_name","first_touch","last_touch","linear_touch","markov_model")

R2=melt(R2,id="channel_name")

ggplot(R2, aes(channel_name, value, fill = variable)) +

ggtitle("")+

geom_bar(stat="identity", position = "dodge") +

theme(plot.title = element_text(hjust = 0.5))+

theme(text = element_text(size=14)) +

theme(plot.title=element_text(size=18)) +

theme(legend.title = element_blank()) +

ylab("") +

xlab("")

4

4 Python library ChannelAttribution

In the following example we will show how Python library ChannelAttribution can be used for multichannel
attribution problem.

#LOAD LIBRARIES AND DATA

import numpy as np

import pandas as pd

from ChannelAttribution import *

import plotly.io as pio

Data = pd.read_csv("https://channelattribution.io/csv/Data.csv",sep=";")

#ESTIMATE HEURISTIC MODELS

H=heuristic_models(Data,"path","total_conversions",var_value="total_conversion_value")

#ESTIMATE MARKOV MODEL

M=markov_model(Data, "path", "total_conversions", var_value="total_conversion_value")

#PLOT TOTAL CONVERSIONS

R=pd.merge(H,M,on="channel_name",how="inner")

R1=R[["channel_name","first_touch_conversions","last_touch_conversions",\

"linear_touch_conversions","total_conversions"]]

R1.columns=["channel_name","first_touch","last_touch","linear_touch","markov_model"]

R1=pd.melt(R1, id_vars="channel_name")

data = [dict(

type = "histogram",

histfunc="sum",

x = R1.channel_name,

y = R1.value,

transforms = [dict(

type = "groupby",

groups = R1.variable,

)],

)]

fig = dict({"data":data})

pio.show(fig,validate=False)

5

https://channelattribution.io
https://channelattribution.io

#PLOT REVENUES

R2=R[["channel_name","first_touch_value","last_touch_value",\

"linear_touch_value","total_conversion_value"]]

R2.columns=["channel_name","first_touch","last_touch","linear_touch","markov_model"]

R2=pd.melt(R2, id_vars="channel_name")

data = [dict(

type = "histogram",

histfunc="sum",

x = R2.channel_name,

y = R2.value,

transforms = [dict(

type = "groupby",

groups = R2.variable,

)],

)]

fig = dict({"data":data})

pio.show(fig,validate=False)

5 Transaction level attribution with Markov Model

5.1 Transaction level attribution problem

Transaction level attribution is problematic using Markov models. Markov model can be considered a "global"
approach because it makes attribution considering all the paths together. Instead heuristic models are "local"
approaches because they make attribution considering one path at the time and then global attribution for each
channel is obtained through aggregation. Using Markov model one can not go from global to local attribution
in a unique way. Because Markov model returns the aggregate result and you can not go from this aggregation
to single path attribution.

Why Markov model is a global approach? Markov model aggregates real paths to build a Markov graph, a
graphical representation of a transition matrix. Markov graph is a mathematical representation of the dynamics
between channels. Markov model generates millions of random paths from Markov graph. Random paths are
used to calculate importance weights (removal e�ects) for each channel. At the end of the process importance
weights are normalized and multiplied by total conversions (the overall conversions observed for all the paths
considered) to make attribution for each channel. Thus Makov model is global because �rst it aggregates paths
to build transition matrix and then it works with simulate paths �forgetting� each single real path.

6

5.2 Functions for transaction level attribution

There are two ways you can make transaction-level attribution using ChannelAttribution: the APIs included in
the open-source Python library or installing our commercial version ChannelAttributionPro which is available
both for Python and for R. The main di�erence between them is that through the APIs your data is encrypted
and sent to our server for the elaboration while ChannelAttributionPro can be installed locally and no data is
transferred. Moreover, the APIs include a maximum size limit of 10MB for the number of customer journeys
that can be elaborated while ChannelAttributionPro includes a trial period where the functions can be used
without any limitations. If you want to try ChannelAttributionPro write us at info@channelattribution.io.

There are two functions in ChannelAttribution that are useful for transaction level attribution:
markov_model_local and new_paths_attribution.

5.2.1 Function generate_token()

You can use this function to generate a token that enables the use of our APIs to make path-level attribution.
An email containing your personal token will be sent to the email address indicated.

generate_token()

Parameters

email your business/university email at which we will send your personal token
company name of your company/university
job your job

5.2.2 Function markov_model_local()

markov_model_local can be used to make transaction level attribution.

markov_model_local()

Parameters

Data data.frame containing customer journeys data
var_path name of the column containing paths
var_conv name of the column containing total conversions
var_value name of the column containing total conversion value
var_null name of the column containing total paths that do not lead to conversions
order Markov model order
sep separator between the channels
ncore number of threads used in computation
conv_par_gob convergence parameter for the global attribution. The estimation process ends when the

percentage of variation of the results over di�erent repetitions is less than conv_par_loc
(this is equal to conv_par parameter of markov_model function)

conv_par_loc convergence parameter for the local attribution. The estimation process ends when the per-
centage di�erence between global and aggregated local attribution is less than conv_par_loc

verbose if TRUE, additional information about process convergence will be shown

Output

path_attribution

idpath numerical id for the path considered
path Path
channel channel name
total_conversions_weight normalized channel weight used to make conversion attribution at path

level
total_conversions_attribution conversions attributed to channel considered at path level
total_conversion_value_weight normalized channel weight used to make conversion value attribution at

path level
total_conversion_value_attributionconversion value attributed to channel considered at path level

7

https://channelattribution.io
https://channelattribution.io
https://channelattribution.io
https://channelattribution.io
https://channelattribution.io
mailto:info@channelattribution.io
https://channelattribution.io

removal_e�ects

channel_name channel name
removal_e�ects_conversion removal e�ects for conversion attribution from global attribution
removal_e�ects_conversion_value removal e�ects for value attribution from global attribution

corrective_factors � total conversions

channel channel name
perc_corr_j correction percentage at iteration j from the iterative matching process between global and

local attribution

corrective_factors � total conversion value

channel channel name
perc_corr_j correction percentage at iteration j from the iterative matching process between global and

local attribution

5.2.3 Function new_paths_attribution()

new_paths_attribution uses removal e�ects and corrective factors from markov_model_local to calculate
weights for channels belonging to new paths. This function is useful for weights calculation in real time
attribution.

new_paths_attribution()

Parameters

tab_new data.frame containing new paths
var_path name of the column containing paths
Tab_re removal e�ects from global attribution
D_tab_corr corrective factors from local attribution
Sep separator between channels

Output

path path
Idpath numerical id for the path considered
channel channel
weight_total_conversions normalized channel weight used to make conversion attribution at path

level
weight_total_conversion_value normalized channel weight used to make conversion value attribution at

path level

5.3 Examples

In the following it will be shown how these functions can be used to make transaction level attribution using R
or Python.

5.3.1 APIs

Our APIs can be used to test path-level attribution on your data. Running the functions, your data will be
encrypted and sent to our server where they will be elaborated. Then the output will be encrypted and sent to
your local session. We do not share or store your data that will be canceled from our server immediately after
the end of the elaboration.

#######

#PYTHON

#######

8

from ChannelAttribution import *

#Download data

Data = pd.read_csv("https://channelattribution.io/csv/Data.csv",sep=";")

#Generate token

generate_token(email="mario.rossi@data.com", job="data scientist", company="data.com")

#Train

res=markov_model_local_api(token, Data, var_path="path", var_conv="total_conversions",\

var_value="total_conversion_value", var_null="total_null", order=1, sep=">")

#Tab_re and D_tab_corr are output from train, you need to store them if you want to make real time attribution

on new paths

Tab_re=res["removal_effects"].copy()

D_tab_corr=res["corrective_factors"].copy()

#tab_new is a sample dataset containing new paths to be attributed

tab_new=Data.loc[0:5,["path"]]

#real time attribution on new paths

res_new=new_paths_attribution_api(token, tab_new,var_path="path", Tab_re=Tab_re, D_tab_corr=D_tab_corr, sep=">"

)

5.3.2 ChannelAttributionPro

ChannelAttributionPro is the commercial version of ChannelAttribution. You can try it for free asking to
info@channelattribution.io. You will receive the installation instructions and a password. At the beginning of
each execution, ChannelAttributionPro will send your password to our server that will enable the computation.
No data will be transferred to our server and all the execution will be made locally.

5.3.3 Python

from ChannelAttributionPro import *

password="youpassword"

#Download data

Data = pd.read_csv("https://channelattribution.io/csv/Data.csv",sep=";")

#Train

res=markov_model_local(Data, var_path="path", var_conv="total_conversions",\

var_value="total_conversion_value", var_null="total_null", order=1, sep=">", ncore=1, conv_par_glob=0.05,\

conv_par_loc=0.01,verbose=True,server="app.channelattribution.net", password=password)

#Tab_re and D_tab_corr are output from train, you need to store them if you want to make real time attribution

on new paths

Tab_re=res["removal_effects"].copy()

D_tab_corr=res["corrective_factors"].copy()

#tab_new is a sample dataset containing new paths to be attributed

tab_new=Data.loc[0:5,["path"]]

#real time attribution on new paths

res_new=new_paths_attribution(tab_new,var_path="path",Tab_re=Tab_re,D_tab_corr=D_tab_corr,sep=">",\

server="app.channelattribution.net", password=password)

5.3.4 R

9

https://channelattribution.io
https://channelattribution.io
mailto:info@channelattribution.io
https://channelattribution.io

library(ChannelAttributionPro)

#Load Data

data(PathData)

password="youpassword"

#Train

res=markov_model_local(Data, var_path="path", var_conv="total_conversions",

var_value="total_conversion_value", var_null="total_null", order=1, sep=">", ncore=1, conv_par_glob=0.05, conv_

par_loc=0.01, verbose=TRUE,

server="app.channelattribution.net", password=password)

#Tab_re and D_tab_corr are output from train, you need to store them if you want to make real time attribution

on new paths

#Save Tab_re and D_tab_corr

Out_ML=list()

Out_ML[["Tab_re"]]=res[['removal_effects']]

Out_ML[["D_tab_corr"]]=res[['corrective_factors']]

save(Out_ML,file=".../Out_ML.RData")

rm(Out_ML)

#tab_new is a sample dataset containing new paths to be attributed

tab_new=Data[0:5,"path"]

#load Tab_re and D_tab_corr

load(file=".../Out_ML.RData")

Tab_re=Out_ML[["Tab_re"]]

D_tab_corr=Out_ML[["D_tab_corr"]]

#real time attribution on new paths

res_new=new_paths_attribution(tab_new,var_path="path",Tab_re=Tab_re,D_tab_corr=D_tab_corr,sep=">",

server="app.channelattribution.net", password=password)

10

	Introduction
	First-order Markov Model
	R package ChannelAttribution
	Python library ChannelAttribution
	Transaction level attribution with Markov Model
	Transaction level attribution problem
	Functions for transaction level attribution
	Function generate_token()
	Function markov_model_local()
	Function new_paths_attribution()

	Examples
	APIs
	ChannelAttributionPro
	Python
	R

