Markov model
Import libraries
from ChannelAttributionPro import *
pd.set_option('display.expand_frame_repr', False)
Set the password
password="mypassword"
Load data
Data = pd.read_csv("https://app.channelattribution.net/data/Data.csv",sep=";")
print(Data)
Perform transaction level attribution reading data from a data.frame
res=markov_model(Data=Data, var_path="path", var_conv="total_conversions",
var_value="total_conversion_value", var_null="total_null",
cha_sep=">", password=password)
path_attribution=res["attribution"]
print(path_attribution)
Return non converting paths in the output data.frame
res=markov_model(Data=Data, var_path="path", var_conv="total_conversions",
var_value="total_conversion_value",var_null="total_null",
cha_sep=">", flg_write_nulls=1, password=password)
path_attribution=res["attribution"]
print(path_attribution)
Return paths in the output data.frame
res=markov_model(Data=Data, var_path="path", var_conv="total_conversions",
var_value="total_conversion_value", var_null="total_null",
cha_sep=">", flg_write_paths=1, password=password)
path_attribution=res["attribution"]
print(path_attribution)