Markov model
Import libraries
library(ChannelAttributionPro)
Set the password
password="mypassword"
Load data
Data = read.csv("https://app.channelattribution.net/data/Data.csv",sep=";")
print(Data)
Perform transaction level attribution reading data from a data.frame
res=markov_model(Data=Data, var_path="path", var_conv="total_conversions", var_value="total_conversion_value",
var_null="total_null", cha_sep=">", password=password)
path_attribution=res$attribution
print(path_attribution)
Return non converting paths in the output data.frame
res=markov_model(Data=Data, var_path="path", var_conv="total_conversions", var_value="total_conversion_value",
var_null="total_null", cha_sep=">", flg_write_nulls=1, password=password)
path_attribution=res$attribution
print(path_attribution)
Return paths in the output data.frame
res=markov_model(Data=Data, var_path="path", var_conv="total_conversions", var_value="total_conversion_value",
var_null="total_null", cha_sep=">", flg_write_paths=1, password=password)
path_attribution=res$attribution
print(path_attribution)