Skip to main content

Markov model

Import libraries

library(ChannelAttributionPro)

Set the password

password="mypassword"

Load data

Data = read.csv("https://app.channelattribution.net/data/Data.csv",sep=";")
print(Data)

Perform transaction level attribution reading data from a data.frame

res=markov_model(Data=Data, var_path="path", var_conv="total_conversions", var_value="total_conversion_value",
var_null="total_null", cha_sep=">", password=password)
path_attribution=res$attribution
print(path_attribution)

Return non converting paths in the output data.frame

res=markov_model(Data=Data, var_path="path", var_conv="total_conversions", var_value="total_conversion_value",
var_null="total_null", cha_sep=">", flg_write_nulls=1, password=password)
path_attribution=res$attribution
print(path_attribution)

Return paths in the output data.frame

res=markov_model(Data=Data, var_path="path", var_conv="total_conversions", var_value="total_conversion_value",
var_null="total_null", cha_sep=">", flg_write_paths=1, password=password)
path_attribution=res$attribution
print(path_attribution)